fonts-conf

Name

fonts.conf — Font configuration files

Synopsis

/etc/fonts/fonts.conf
/etc/fonts/fonts.dtd

/etc/fonts/conf.d
S$SXDG_CONFIG_HOME/fontconfig/conf.d
$XDG_CONFIG_HOME/fontconfig/fonts.conf
~/.fonts.conf.d

~/.fonts.conf

Description

Fontconfig is a library designed to provide system-wide font configuration, customization and
application access.

Functional Overview

Fontconfig contains two essential modules, the configuration module which builds an internal
configuration from XML files and the matching module which accepts font patterns and returns the
nearest matching font.

Font Configuration

The configuration module consists of the FcConfig datatype, libexpat and FcConfigParse which walks
over an XML tree and amends a configuration with data found within. From an external perspective,
configuration of the library consists of generating a valid XML tree and feeding that to FcConfigParse.
The only other mechanism provided to applications for changing the running configuration is to add
fonts and directories to the list of application-provided font files.

The intent is to make font configurations relatively static, and shared by as many applications as possible.
It is hoped that this will lead to more stable font selection when passing names from one application to
another. XML was chosen as a configuration file format because it provides a format which is easy for
external agents to edit while retaining the correct structure and syntax.

fonts-conf

Font configuration is separate from font matching; applications needing to do their own matching can
access the available fonts from the library and perform private matching. The intent is to permit
applications to pick and choose appropriate functionality from the library instead of forcing them to
choose between this library and a private configuration mechanism. The hope is that this will ensure that
configuration of fonts for all applications can be centralized in one place. Centralizing font configuration
will simplify and regularize font installation and customization.

Font Properties

While font patterns may contain essentially any properties, there are some well known properties with
associated types. Fontconfig uses some of these properties for font matching and font completion. Others
are provided as a convenience for the applications’ rendering mechanism.

Property Type Description
family String Font family names
familylang String Languages corresponding to each family
style String Font style. Overrides weight and slant
stylelang String Languages corresponding to each style
fullname String Font full names (often includes style)
fullnamelang String Languages corresponding to each fullname
slant Int Italic, oblique or roman
weight Int Light, medium, demibold, bold or black
size Double Point size
width Int Condensed, normal or expanded
aspect Double Stretches glyphs horizontally before hinting
pixelsize Double Pixel size
spacing Int Proportional, dual-width, monospace or charcell
foundry String Font foundry name
antialias Bool Whether glyphs can be antialiased
hinting Bool Whether the rasterizer should use hinting
hintstyle Int Automatic hinting style
verticallayout Bool Use vertical layout
autohint Bool Use autohinter instead of normal hinter
globaladvance Bool Use font global advance data (deprecated)
file String The filename holding the font
index Int The index of the font within the file
ftface FT_Face Use the specified FreeType face object
rasterizer String Which rasterizer is in use (deprecated)
outline Bool Whether the glyphs are outlines
scalable Bool Whether glyphs can be scaled
color Bool Whether any glyphs have color
scale Double Scale factor for point->pixel conversions (deprecated)
dpi Double Target dots per inch
rgba Int unknown, rgb, bgr, vrgb, vbgr,

none - subpixel geometry
lcdfilter Int Type of LCD filter
minspace Bool Eliminate leading from line spacing
charset CharSet Unicode chars encoded by the font
lang String List of RFC-3066-style languages this

fonts-conf

font supports

fontversion Int Version number of the font

capability String List of layout capabilities in the font

fontformat String String name of the font format

embolden Bool Rasterizer should synthetically embolden the font

embeddedbitmap Bool Use the embedded bitmap instead of the outline

decorative Bool Whether the style is a decorative variant

fontfeatures String List of the feature tags in OpenType to be enabled

namelang String Language name to be used for the default value of
familylang, stylelang, and fullnamelang

prgname String String Name of the running program

postscriptname String Font family name in PostScript

fonthashint Bool Whether the font has hinting

order Int Order number of the font

Font Matching

Fontconfig performs matching by measuring the distance from a provided pattern to all of the available
fonts in the system. The closest matching font is selected. This ensures that a font will always be
returned, but doesn’t ensure that it is anything like the requested pattern.

Font matching starts with an application constructed pattern. The desired attributes of the resulting font
are collected together in a pattern. Each property of the pattern can contain one or more values; these are
listed in priority order; matches earlier in the list are considered "closer" than matches later in the list.

The initial pattern is modified by applying the list of editing instructions specific to patterns found in the
configuration; each consists of a match predicate and a set of editing operations. They are executed in the
order they appeared in the configuration. Each match causes the associated sequence of editing
operations to be applied.

After the pattern has been edited, a sequence of default substitutions are performed to canonicalize the
set of available properties; this avoids the need for the lower layers to constantly provide default values
for various font properties during rendering.

The canonical font pattern is finally matched against all available fonts. The distance from the pattern to
the font is measured for each of several properties: foundry, charset, family, lang, spacing, pixelsize,
style, slant, weight, antialias, rasterizer and outline. This list is in priority order -- results of comparing
earlier elements of this list weigh more heavily than later elements.

There is one special case to this rule; family names are split into two bindings; strong and weak. Strong
family names are given greater precedence in the match than lang elements while weak family names are
given lower precedence than lang elements. This permits the document language to drive font selection
when any document specified font is unavailable.

fonts-conf

The pattern representing that font is augmented to include any properties found in the pattern but not
found in the font itself; this permits the application to pass rendering instructions or any other data
through the matching system. Finally, the list of editing instructions specific to fonts found in the
configuration are applied to the pattern. This modified pattern is returned to the application.

The return value contains sufficient information to locate and rasterize the font, including the file name,
pixel size and other rendering data. As none of the information involved pertains to the FreeType library,
applications are free to use any rasterization engine or even to take the identified font file and access it
directly.

The match/edit sequences in the configuration are performed in two passes because there are essentially
two different operations necessary -- the first is to modify how fonts are selected; aliasing families and
adding suitable defaults. The second is to modify how the selected fonts are rasterized. Those must apply
to the selected font, not the original pattern as false matches will often occur.

Font Names

Fontconfig provides a textual representation for patterns that the library can both accept and generate.
The representation is in three parts, first a list of family names, second a list of point sizes and finally a
list of additional properties:

<families>-<point sizes>:<namel>=<valuesl>:<name2>=<values2>...

Values in a list are separated with commas. The name needn’t include either families or point sizes; they
can be elided. In addition, there are symbolic constants that simultaneously indicate both a name and a
value. Here are some examples:

Name Meaning

Times-12 12 point Times Roman

Times-12:bold 12 point Times Bold

Courier:italic Courier Italic in the default size
Monospace:matrix=1 .1 0 1 The users preferred monospace font

with artificial obliquing

The °\’,’-’,’:” and ’,” characters in family names must be preceded by a ’\’ character to avoid having

them misinterpreted. Similarly, values containing ’\’, ’=",’_’, ’:” and ’,” must also have them preceded by
a’\’ character. The ’\’ characters are stripped out of the family name and values as the font name is read.

fonts-conf

Debugging Applications

To help diagnose font and applications problems, fontconfig is built with a large amount of internal
debugging left enabled. It is controlled by means of the FC_DEBUG environment variable. The value of
this variable is interpreted as a number, and each bit within that value controls different debugging
messages.

Name Value Meaning

MATCH 1 Brief information about font matching

MATCHV 2 Extensive font matching information

EDIT 4 Monitor match/test/edit execution

FONTSET 8 Track loading of font information at startup
CACHE 16 Watch cache files being written

CACHEV 32 Extensive cache file writing information

PARSE 64 (no longer in use)

SCAN 128 Watch font files being scanned to build caches
SCANV 256 Verbose font file scanning information

MEMORY 512 Monitor fontconfig memory usage

CONFIG 1024 Monitor which config files are loaded

LANGSET 2048 Dump char sets used to construct lang values
MATCH2 4096 Display font-matching transformation in patterns

Add the value of the desired debug levels together and assign that (in base 10) to the FC_DEBUG
environment variable before running the application. Output from these statements is sent to stdout.

Lang Tags

Each font in the database contains a list of languages it supports. This is computed by comparing the
Unicode coverage of the font with the orthography of each language. Languages are tagged using an
RFC-3066 compatible naming and occur in two parts -- the ISO 639 language tag followed a hyphen and
then by the ISO 3166 country code. The hyphen and country code may be elided.

Fontconfig has orthographies for several languages built into the library. No provision has been made for
adding new ones aside from rebuilding the library. It currently supports 122 of the 139 languages named
in ISO 639-1, 141 of the languages with two-letter codes from ISO 639-2 and another 30 languages with
only three-letter codes. Languages with both two and three letter codes are provided with only the two
letter code.

For languages used in multiple territories with radically different character sets, fontconfig includes
per-territory orthographies. This includes Azerbaijani, Kurdish, Pashto, Tigrinya and Chinese.

fonts-conf

Configuration File Format

Configuration files for fontconfig are stored in XML format; this format makes external configuration
tools easier to write and ensures that they will generate syntactically correct configuration files. As XML
files are plain text, they can also be manipulated by the expert user using a text editor.

The fontconfig document type definition resides in the external entity "fonts.dtd"; this is normally stored
in the default font configuration directory (/etc/fonts). Each configuration file should contain the
following structure:

<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "urn:fontconfig:fonts.dtd">
<fontconfig>

</fontconfig>

<fontconfig>

This is the top level element for a font configuration and can contain <dir>, <cachedir>,
<include>, <match> and <alias> elements in any order.

<dir prefix="default" salt="">

This element contains a directory name which will be scanned for font files to include in the set of
available fonts.

If ’prefix’ is set to "default” or "cwd", the current working directory will be added as the path prefix prior
to the value. If "prefix’ is set to "xdg", the value in the XDG_DATA_HOME environment variable will be
added as the path prefix. please see XDG Base Directory Specification for more details. If *prefix’ is set
to "relative", the path of current file will be added prior to the value.

’salt’ property affects to determine cache filename. this is useful for example when having different fonts
sets on same path at container and share fonts from host on different font path.

<cachedir prefix="default">

This element contains a directory name that is supposed to be stored or read the cache of font
information. If multiple elements are specified in the configuration file, the directory that can be accessed
first in the list will be used to store the cache files. If it starts with *~’, it refers to a directory in the users
home directory. If *prefix’ is set to "xdg", the value in the XDG_CACHE_HOME environment variable

fonts-conf

will be added as the path prefix. please see XDG Base Directory Specification for more details. The
default directory is “$XDG_CACHE_HOME/fontconfig” and it contains the cache files named “<hash
value>-<architecture>.cache-<version>", where <version> is the fontconfig cache file
version number (currently 7).

<include ignore_missing="no" prefix="default">

This element contains the name of an additional configuration file or directory. If a directory, every file
within that directory starting with an ASCII digit (U+0030 - U+0039) and ending with the string “.conf”
will be processed in sorted order. When the XML datatype is traversed by FcConfigParse, the contents of
the file(s) will also be incorporated into the configuration by passing the filename(s) to
FcConfigl.oadAndParse. If ignore_missing’ is set to "yes" instead of the default "no", a missing file or
directory will elicit no warning message from the library. If *prefix’ is set to "xdg", the value in the
XDG_CONFIG_HOME environment variable will be added as the path prefix. please see XDG Base
Directory Specification for more details.

<config>

This element provides a place to consolidate additional configuration information. <config> can
contain <blank> and <rescan> elements in any order.

<description domain="fontconfig-conf">

This element is supposed to hold strings which describe what a config is used for. This string can be
translated through gettext. ‘domain’ needs to be set the proper name to apply then. fontconfig will tries to
retrieve translations with ’domain’ from gettext.

<blank>

Fonts often include "broken" glyphs which appear in the encoding but are drawn as blanks on the screen.
Within the <blank> element, place each Unicode characters which is supposed to be blank in an
<int> element. Characters outside of this set which are drawn as blank will be elided from the set of
characters supported by the font.

<remap-dir prefix="default" as-path="" salt="">

This element contains a directory name where will be mapped as the path *as-path’ in cached
information. This is useful if the directory name is an alias (via a bind mount or symlink) to another
directory in the system for which cached font information is likely to exist.

fonts-conf

’salt’ property affects to determine cache filename as same as <dir> element.

<reset-dirs />

This element removes all of fonts directories where added by <dir> elements. This is useful to override
fonts directories from system to own fonts directories only.

<rescan>

The <rescan> element holds an <int> element which indicates the default interval between
automatic checks for font configuration changes. Fontconfig will validate all of the configuration files
and directories and automatically rebuild the internal datastructures when this interval passes.

<selectfont>

This element is used to black/white list fonts from being listed or matched against. It holds acceptfont
and rejectfont elements.

<acceptfont>

Fonts matched by an acceptfont element are "whitelisted"; such fonts are explicitly included in the set of
fonts used to resolve list and match requests; including them in this list protects them from being
"blacklisted" by a rejectfont element. Acceptfont elements include glob and pattern elements which are
used to match fonts.

<rejectfont>

Fonts matched by an rejectfont element are "blacklisted"; such fonts are excluded from the set of fonts
used to resolve list and match requests as if they didn’t exist in the system. Rejectfont elements include
glob and pattern elements which are used to match fonts.

<glob>

Glob elements hold shell-style filename matching patterns (including ? and *) which match fonts based
on their complete pathnames. This can be used to exclude a set of directories (/usr/share/fonts/uglyfont™®),
or particular font file types (*.pcf.gz), but the latter mechanism relies rather heavily on filenaming
conventions which can’t be relied upon. Note that globs only apply to directories, not to individual fonts.

fonts-conf

<pattern>

Pattern elements perform list-style matching on incoming fonts; that is, they hold a list of elements and
associated values. If all of those elements have a matching value, then the pattern matches the font. This
can be used to select fonts based on attributes of the font (scalable, bold, etc), which is a more reliable
mechanism than using file extensions. Pattern elements include patelt elements.

<patelt name="property">

Patelt elements hold a single pattern element and list of values. They must have a name’ attribute which
indicates the pattern element name. Patelt elements include int, double, string, matrix, bool, charset and
const elements.

<match target="pattern">

This element holds first a (possibly empty) list of <test> elements and then a (possibly empty) list of
<edit> elements. Patterns which match all of the tests are subjected to all the edits. If ’target’ is set to
"font" instead of the default "pattern”, then this element applies to the font name resulting from a match
rather than a font pattern to be matched. If ’target’ is set to "scan", then this element applies when the
font is scanned to build the fontconfig database.

<test qual="any" name="property" target="default" compare="eq">

This element contains a single value which is compared with the target (’pattern’, *font’, >scan’ or
’default’) property "property” (substitute any of the property names seen above). ’compare’ can be one of
"eq", "not_eq", "less", "less_eq", "more", "more_eq", "contains" or "not_contains". ’qual’ may either be
the default, "any", in which case the match succeeds if any value associated with the property matches
the test value, or "all", in which case all of the values associated with the property must match the test
value. ’ignore-blanks’ takes a boolean value. if “ignore-blanks’ is set "true", any blanks in the string will
be ignored on its comparison. this takes effects only when compare="eq" or compare="not_eq". When
used in a <match target="font"> element, the target= attribute in the <test> element selects between
matching the original pattern or the font. "default" selects whichever target the outer <match> element
has selected.

<edit name="property" mode="assign" binding="weak">

This element contains a list of expression elements (any of the value or operator elements). The
expression elements are evaluated at run-time and modify the property "property". The modification
depends on whether "property" was matched by one of the associated <test> elements, if so, the
modification may affect the first matched value. Any values inserted into the property are given the

fonts-conf

indicated binding ("strong", "weak" or "same") with "same" binding using the value from the matched
pattern element. *'mode’ is one of:

Mode With Match Without Match

"assign" Replace matching value Replace all values
"assign_replace" Replace all values Replace all values
"prepend" Insert before matching Insert at head of list
"prepend_first" Insert at head of list Insert at head of list
"append" Append after matching Append at end of list
"append_last" Append at end of list Append at end of list
"delete" Delete matching value Delete all values
"delete_all" Delete all values Delete all values

<int>, <double>, <string>, <bool>

These elements hold a single value of the indicated type. <bool> elements hold either true or false. An
important limitation exists in the parsing of floating point numbers -- fontconfig requires that the
mantissa start with a digit, not a decimal point, so insert a leading zero for purely fractional values (e.g.
use 0.5 instead of .5 and -0.5 instead of -.5).

<matrix>

This element holds four numerical expressions of an affine transformation. At their simplest these will be
four <double> elements but they can also be more involved expressions.

<range>

This element holds the two <int> elements of a range representation.

<charset>

This element holds at least one <int> element of an Unicode code point or more.

<langset>

This element holds at least one <string> element of a RFC-3066-style languages or more.

10

fonts-conf

<name>

Holds a property name. Evaluates to the first value from the property of the pattern. If the target’
attribute is not present, it will default to ’default’, in which case the property is returned from the font
pattern during a target="font" match, and to the pattern during a target="pattern" match. The attribute
can also take the values ’font’ or ’pattern’ to explicitly choose which pattern to use. It is an error to use a
target of ’font’ in a match that has target="pattern".

<const>

Holds the name of a constant; these are always integers and serve as symbolic names for common font
values:

Constant Property Value
thin weight 0
extralight weight 40
ultralight weight 40
light weight 50
demilight weight 55
semilight weight 55
book weight 75
regular weight 80
normal weight 80
medium weight 100
demibold weight 180
semibold weight 180
bold weight 200
extrabold weight 205
black weight 210
heavy weight 210
roman slant 0
italic slant 100
oblique slant 110
ultracondensed width 50
extracondensed width 63
condensed width 75
semicondensed width 87
normal width 100
semiexpanded width 113
expanded width 125
extraexpanded width 150
ultraexpanded width 200
proportional spacing 0
dual spacing 90
mono spacing 100
charcell spacing 110
unknown rgba 0
rgb rgba 1
bgr rgba 2

11

fonts-conf

vrgb rgba 3
vbgr rgba 4
none rgba 5
lcdnone lcdfilter 0
lcddefault lcdfilter 1
lcdlight lcdfilter 2
lcdlegacy lcdfilter 3
hintnone hintstyle 0
hintslight hintstyle 1
hintmedium hintstyle 2
hintfull hintstyle 3

<or>, <and>, <plus>, <minus>, <times>, <divide>

These elements perform the specified operation on a list of expression elements. <or> and <and> are
boolean, not bitwise.

<eqg>, <not_eqg>, <less>, <less_eqg>, <more>, <more_eq>, <contains>,
<not_contains

These elements compare two values, producing a boolean result.

<not>

Inverts the boolean sense of its one expression element

<if>

This element takes three expression elements; if the value of the first is true, it produces the value of the
second, otherwise it produces the value of the third.

<alias>

Alias elements provide a shorthand notation for the set of common match operations needed to substitute
one font family for another. They contain a <family> element followed by optional <prefer>,
<accept> and <default> elements. Fonts matching the <family> element are edited to prepend
the list of <prefer>ed families before the matching < family>, append the <accept >able families
after the matching < family> and append the <default> families to the end of the family list.

12

fonts-conf

<family>

Holds a single font family name

<prefer>, <accept>, <default>

These hold a list of <family> elements to be used by the <alias> element.

EXAMPLE CONFIGURATION FILE

System configuration file

This is an example of a system-wide configuration file

<?xml version="1.0"7?>

<!DOCTYPE fontconfig SYSTEM "urn:fontconfig:fonts.dtd">

<!-- /etc/fonts/fonts.conf file to configure system font access —-->
<fontconfig>

<!--

Find fonts in these directories

-——>

<dir>/usr/share/fonts</dir>

<dir>/usr/X11R6/1ib/X11/fonts</dir>

<!—-

Accept deprecated ’'mono’ alias, replacing it with ’monospace’

—-——>

<match target="pattern">

<test qual="any" name="family"><string>mono</string></test>

<edit name="family" mode="assign"><string>monospace</string></edit>
</match>

<!--

Names not including any well known alias are given ’sans-serif’

-——>

<match target="pattern">

<test qual="all" name="family" compare="not_eqg"><string>sans-serif</string></test>
<test qual="all" name="family" compare="not_eq"><string>serif</string></test>
<test qual="all" name="family" compare="not_eq"><string>monospace</string></test>
<edit name="family" mode="append_last"><string>sans-serif</string></edit>
</match>

<!--

Load per-user customization file, but don’t complain
if it doesn’t exist

—-——>

13

fonts-conf

<include ignore_missing="yes" prefix="xdg">fontconfig/fonts.conf</include>

<I!--

Load local customization files, but don’t complain
if there aren’t any

-—>

<include ignore_missing="yes">conf.d</include>
<include ignore_missing="yes">local.conf</include>

<l--

Alias well known font names to available TrueType fonts.

These substitute TrueType faces for similar Typel
faces to improve screen appearance.

-—>

<alias>

<family>Times</family>

<prefer><family>Times New Roman</family></prefer>
<default><family>serif</family></default>
</alias>

<alias>

<family>Helvetica</family>
<prefer><family>Arial</family></prefer>
<default><family>sans</family></default>
</alias>

<alias>

<family>Courier</family>
<prefer><family>Courier New</family></prefer>
<default><family>monospace</family></default>
</alias>

<I!I-=

Provide required aliases for standard names

Do these after the users configuration file so that
any aliases there are used preferentially

-—>

<alias>

<family>serif</family>

<prefer><family>Times New Roman</family></prefer>
</alias>

<alias>

<family>sans</family>
<prefer><family>Arial</family></prefer>
</alias>

<alias>

<family>monospace</family>
<prefer><family>Andale Mono</family></prefer>
</alias>

<__

The example of the requirements of OR operator;

If the ’'family’ contains ’'Courier New’ OR ’Courier’
add ’"monospace’ as the alternative
-—>

14

fonts-conf

<match target="pattern">

<test name="family" compare="eqg">
<string>Courier New</string>
</test>

<edit name="family" mode="prepend">
<string>monospace</string>
</edit>

</match>

<match target="pattern">

<test name="family" compare="eqg">
<string>Courier</string>

</test>

<edit name="family" mode="prepend">
<string>monospace</string>
</edit>

</match>

</fontconfig>

User configuration file

This is an example of a per-user configuration file that lives in
$XDG_CONFIG_HOME/fontconfig/fonts.conf

<?xml version="1.0"?>

<!DOCTYPE fontconfig SYSTEM "urn:fontconfig:fonts.dtd">

<!-— S$XDG_CONFIG_HOME/fontconfig/fonts.conf for per-user font configuration —->
<fontconfig>

<l--

Private font directory

-——>

<dir prefix="xdg">fonts</dir>

<!--

use rgb sub-pixel ordering to improve glyph appearance on

LCD screens. Changes affecting rendering, but not matching
should always use target="font".
-—>

<match target="font">

<edit name="rgba" mode="assign"><const>rgb</const></edit>
</match>
<!--

use WenQuan¥Yi Zen Hei font when serif is requested for Chinese
—-——>
<match>

<!--

If you don’t want to use WenQuan¥Yi Zen Hei font for zh-tw etc,
you can use zh-cn instead of zh.

15

fonts-conf

Please note, even if you set zh-cn, it still matches zh.
if you don’t like it, you can use compare="eq"
instead of compare="contains".

-——>

<test name="lang" compare="contains">
<string>zh</string>

</test>

<test name="family">
<string>serif</string>
</test>
<edit name="family" mode="prepend">
<string>WenQuanYi Zen Hei</string>
</edit>
</match>
<I!-=
use VL Gothic font when sans-serif is requested for Japanese
-——>

<match>

<test name="lang" compare="contains">
<string>ja</string>

</test>

<test name="family">
<string>sans-serif</string>
</test>
<edit name="family" mode="prepend">
<string>VL Gothic</string>
</edit>

</match>

</fontconfig>

Files

fonts.conf contains configuration information for the fontconfig library consisting of directories to look
at for font information as well as instructions on editing program specified font patterns before
attempting to match the available fonts. It is in XML format.

conf.d is the conventional name for a directory of additional configuration files managed by external
applications or the local administrator. The filenames starting with decimal digits are sorted in
lexicographic order and used as additional configuration files. All of these files are in XML format. The
master fonts.conf file references this directory in an <include> directive.

fonts.dtd is a DTD that describes the format of the configuration files.
$XDG_CONFIG_HOME/fontconfig/conf.d and ~/.fonts.conf.d is the conventional name for a per-user

directory of (typically auto-generated) configuration files, although the actual location is specified in the

16

fonts-conf

global fonts.conf file. please note that ~/.fonts.conf.d is deprecated now. it will not be read by default in
the future version.

$XDG_CONFIG_HOME/fontconfig/fonts.conf and ~/.fonts.conf is the conventional location for per-user
font configuration, although the actual location is specified in the global fonts.conf file. please note that
~/.fonts.conf is deprecated now. it will not be read by default in the future version.

$XDG_CACHE_HOME/fontconfig/*.cache-* and ~/.fontconfig/*.cache-* is the conventional repository
of font information that isn’t found in the per-directory caches. This file is automatically maintained by
fontconfig. please note that ~/.fontconfig/*.cache-* is deprecated now. it will not be read by default in the
future version.

Environment variables

FONTCONFIG_FILE is used to override the default configuration file.

FONTCONFIG_PATH is used to override the default configuration directory.

FONTCONFIG_SYSROOT is used to set a default sysroot directory.

FC_DEBUG is used to output the detailed debugging messages. see Debugging Applications section for
more details.

FC_DBG_MATCH_FILTER is used to filter out the patterns. this takes a comma-separated list of object
names and effects only when FC_DEBUG has MATCH2. see Debugging Applications section for more
details.

FC_LANG is used to specify the default language as the weak binding in the query. if this isn’t set, the
default language will be determined from current locale.

FONTCONFIG_USE_MMAP is used to control the use of mmap(2) for the cache files if available. this
take a boolean value. fontconfig will checks if the cache files are stored on the filesystem that is safe to
use mmap(2). explicitly setting this environment variable will causes skipping this check and enforce to
use or not use mmap(2) anyway.

SOURCE_DATE_EPOCH is used to ensure fc—-cache (1) generates files in a deterministic manner in
order to support reproducible builds. When set to a numeric representation of UNIX timestamp,
fontconfig will prefer this value over using the modification timestamps of the input files in order to
identify which cache files require regeneration. If SOURCE_DATE_EPOCH is not set (or is newer than the
mtime of the directory), the existing behaviour is unchanged.

17

See Also

fc-cat(1), fc-cache(1), fc-list(1), fc-match(1), fc-query(1), SOURCE_DATE_EPOCH
(https://reproducible-builds.org/specs/source-date-epoch/).

Version

Fontconfig version 2.14.1

fonts-conf

18

	fontsconf
	Name
	Synopsis
	Description
	Functional Overview
	Font Configuration
	Font Properties
	Font Matching
	Font Names

	Debugging Applications
	Lang Tags
	Configuration File Format
	fontconfig
	dir prefix="default" salt=""
	cachedir prefix="default"
	include ignoremissing="no" prefix="default"
	config
	description domain="fontconfigconf"
	blank
	remapdir prefix="default" aspath="" salt=""
	resetdirs /
	rescan
	selectfont
	acceptfont
	rejectfont
	glob
	pattern
	patelt name="property"
	match target="pattern"
	test qual="any" name="property" target="default" compare="eq"
	edit name="property" mode="assign" binding="weak"
	int, double, string, bool
	matrix
	range
	charset
	langset
	name
	const
	or, and, plus, minus, times, divide
	eq, noteq, less, lesseq, more, moreeq, contains, notcontains
	not
	if
	alias
	family
	prefer, accept, default

	EXAMPLE CONFIGURATION FILE
	System configuration file
	User configuration file

	Files
	Environment variables
	See Also
	Version

